Корреляция — Сorrelation

Корреляция (Сorrelation) измеряет степень связи между двумя явлениями. Например, существует корреляция между летними температурами и продажей мороженого. Когда повышается температура, растут объемы продажи мороженого.

Две переменные положительно коррелированы, если изменение одной переменной вызывает изменение другой в том же направлении, то есть в направлении увеличения или уменьшения (например, взаимосвязь между ростом и весом человека). У более высоких людей больший вес (в среднем); низкорослые люди весят меньше.

Корреляция отрицательна, если положительное изменение одной переменной обусловливает отрицательное изменение другой (например, связь между регулярным выполнением физических упражнений и весом человека).

Эффективность корреляции как статистического инструмента заключается в том, что мы можем выразить связь между двумя переменными с помощью одной описательной статистики – коэффициента корреляции.

Коэффициент корреляции

Коэффициент корреляции обладает двумя чрезвычайно привлекательными характеристиками. Во-первых, в силу причин математического характера, которые мы обсудим в приложении, он представляет собой число в диапазоне от −1 до 1.

Корреляция, равная 1 (иногда ее называют идеальной корреляцией), означает, что каждому изменению одной переменной соответствует эквивалентное изменение другой переменной в том же направлении.

Корреляция, равная –1 (иногда ее называют идеальной отрицательной корреляцией), означает, что каждому изменению одной переменной соответствует эквивалентное изменение другой переменной в противоположном направлении.

Чем ближе корреляция к 1 или –1, тем сильнее связь между переменными. Нулевая (или близкая к 0) корреляция говорит об отсутствии значимой связи между двумя переменными .

  • Например, с 1926 по 2013 год корреляция между месячной доходностью фондового рынка США и 5-летних казначейских облигаций была равна 0,07. Очень низкая корреляция для двух классов активов. Это означает, что два класса активов в портфеле будут хорошо работать вместе.

Второй привлекательной особенностью коэффициента корреляции является то, что с ним не связаны никакие единицы измерения. Мы можем рассчитать корреляцию между ростом и весом, несмотря на то что рост измеряется в дюймах, а вес – в фунтах.

Таким образом, коэффициент корреляции буквально творит чудеса: он сжимает сложное сочетание данных, измеряемых в разных единицах (наподобие наших диаграмм разброса роста и веса), в единственную элегантную описательную статистику.

Из книги Чарльза Уилана «Голая статистика. Самая интересная книга о самой скучной науке».